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ABSTRACT
Hydrogen is an important energy source for subsurface microbial communities, but its 

availability beyond the flow focused through hydrothermal chimneys is largely unknown. We 
report the widespread export of H2 across the Atlantis Massif oceanic core complex (30°N, 
Mid-Atlantic Ridge; up to 44 nM), which is distinct from the circulation system feeding the 
Lost City Hydrothermal Field (LCHF) on the massif’s southern wall. Methane (CH4) abun-
dances are generally low to undetectable (<3 nM) in fluids that are not derived from the LCHF. 
Reducing fluids exit the seafloor over a wide geographical area and depth range, including 
the summit of the massif and along steep areas of mass wasting east of the field. The depth of 
the fluids in the water column and their H2/CH4 ratios indicate that some are sourced sepa-
rately from the LCHF. We argue that extensive H2 export is the natural consequence of fluid 
flow pathways strongly influenced by tectonic features and the volume and density changes 
that occur when ultramafic rocks react to form serpentinites, producing H2 as a by-product. 
Furthermore, the circulation of H2-rich fluids through uplifted mantle rocks at moderate 
temperatures provides geographically expansive and stable environmental conditions for the 
early evolution of biochemical pathways. These results provide insight into the spatial extent 
of H2- and CH4-bearing fluids associated with serpentinization, independent of the focused 
flow emanating from the LCHF.

INTRODUCTION
A continuous supply of hydrogen formed 

by the interaction of water with mantle rocks 
may have driven the formation of organic mol-
ecules on early Earth and other planets, laying 
the prebiotic groundwork for life (Martin and 
Russell, 2007; Sojo et al., 2016). Hydrogen 
likely fueled the development and evolution of 
early life, as several lines of evidence point to a 
central role of H2-utilizing metabolic pathways 

in the last universal common ancestor (Weiss 
et al., 2017).

Fuel alone is not sufficient for the formation 
of prebiotic organics and early life. Conducive 
temperatures, availability of inorganic carbon, 
mineral surfaces, wet-dry cycles, and metal 
catalysts also determine reaction extents and 
shape the earliest biomolecules necessary to 
harness energy and transfer information (e.g., 
Yu et al., 2013; Camprubi et al., 2017; Frenkel-
Pinter et al., 2020). In this context, the loca-
tions and environmental conditions in which 

H2 forms are as important as the quantities that 
are generated.

We report the widespread export of H2 across 
the Atlantis Massif oceanic core complex (Mid-
Atlantic Ridge, 30°N), which is distinct from the 
circulation system and channeled flow of the 
nearby Lost City Hydrothermal Field (LCHF). 
This type of decentralized export starkly con-
trasts with magmatic-dominated systems at 
 mid-ocean ridges where hot, buoyant fluids dis-
charging from depths of ∼1–3 km are channeled 
into high-permeability up-flow zones (Fisher, 
2004; McCaig et al., 2007). The Atlantis Massif 
decentralized fluids are elevated in H2 and mi-
grate through environments that satisfy multiple 
requirements for the development of early life.

METHODS
Samples and data were collected during In-

ternational Ocean Discovery Program (IODP) 
Expedition 357 (October 2015) and the Lost 
City 2018 Return expedition (September 2018) 
(see Text S1 in the Supplemental Material1). In 
both expeditions, water column samples col-
lected by hydrocasts were analyzed aboard 
the ship for volatile concentrations (H2, CH4) 
(Fig. 1; Figs. S1 and S2). In 2018, the remotely 
operated vehicle (ROV) Jason carried out visual 
seafloor surveys and was outfitted with in situ 
sensors that continually monitored oxidation-
reduction potential (ORP) and temperature.*E-mail: slang@geol.sc.edu

1Supplemental Material. Detailed methods and supplemental figures. Please visit https://doi.org/10.1130/GEOL.S.14233571 to access the supplemental material, 
and contact editing@geosociety.org with any questions.
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RESULTS
Fluid Flow Across the Top of the Massif

The results from Expedition 357 were pre-
viously reported by Früh-Green et al. (2017, 
2018) and are summarized here. Near-seabed 
hydrocasts across the top of the massif captured 
fluids with H2 concentrations regularly in the 
tens of nanomolars and with a high of 44 nM 
above one of the central boreholes, compared to 
background seawater concentrations of <1 nM 
(Fig. 1; Table S2). Fluids flushed from the bore-
holes during drilling reached H2 concentrations 
up to 322 nM (Table S1). In contrast, CH4 con-
centrations were low to undetectable, ranging 
from below the detection limit of 0.3 nM to a 
high of 5 nM in hydrocast and borehole fluids 
(Tables S1 and S2).

In 2018, we also directly observed fluid flow 
at multiple locations across the top of the massif. 
Series of orthogonal veins along a sediment-free 
region at the top of the massif are infilled with 
carbonate (Fig. 1; Fig. S3). Similar fractures 
have been attributed to volume expansion dur-
ing serpentinization (Denny et al., 2016). Active 
flow was confirmed by a 1 °C increase above 
background on a temperature probe.

Flow through the carbonate sands that cover 
much of the rocky surface over the central por-
tion of the massif was also observed ∼450 m 
and ∼700 m north of LCHF (Fig. 1). Two ori-
fices surrounded by bright white deposits were 

identified while transiting (Fig. 2). When the 
ROV passed over the orifices, the ORP sensor 
dropped by 4.3–8.3 mV in conjunction with a 
0.09–0.33 °C temperature increase, indicat-
ing active flow of a fluid more reducing than 
seawater.

Fluids Emanating from the Eastern Wall and 
the Termination of the Detachment Fault

Extensive fluid flow was also observed along 
the eastern wall of the Atlantis Massif (Fig. 1; 
Figs. S4 and S5). The cliff face is the surface 
of a steep normal fault that cuts gabbroic and 
ultramafic rocks within the detachment fault 
zone (Kelley et al., 2005; Karson et al., 2006).

Extensive carbonate deposits on the cliff 
face extend >200 m laterally at a depth of 
800–850 m (Kelley et al., 2005). Large, actively 
venting, carbonate structures also rise from the 
cliff face and fall along the east-west major lin-
eament on which most chimneys occur across 
the LCHF (Fig. 1B) (Kelley et al., 2005). In 
2018, we identified a previously undocumented, 
nearly continuous series of carbonate deposits 
at depths of 855–870 m and extending later-
ally over 30 m (Fig. 1; Figs. S4 and S5). Fluids 
vented directly from the wall with geochemi-
cal characteristics (T = 22 °C; pH22C = 9.1; 
Mg = 36.6 mM) similar to LCHF fluids.

We carried out hydrocasts along the eastern 
wall to cover a broader geographical area. The 

casts captured fluids with elevated H2 and CH4 
(18.7–40.8 nM and 5.4–10.6 nM, respectively) 
at 880–904 m depth, deeper than either identi-
fied contour of carbonate deposits or any known 
vents (Table S2; Figs. S6 and S7). Elevated H2 
concentrations (11.2–19.4 nM) were also de-
tected extensively over the detachment fault 
termination boundary northeast of the LCHF 
(Fig. 1; Table S2).

DISCUSSION
Source of H2 Distinct from the LCHF

The hydrocasts and seafloor surveys dem-
onstrate that reducing fluids with elevated H2 
concentrations exit the seafloor over a wide geo-
graphical area and depth range. Because H2 has 
a residence time of ∼10 h in the water column 
(Kadko et al., 1990), its flux must be sufficient to 
continually resupply near-bottom waters. Three 
potential sources of this H2 are: (1) entrainment 
of LCHF fluids with millimolar H2 concentra-
tions dispersed into a water column plume; (2) 
subsurface migration of LCHF vent fluids to dis-
tal exit points; or (3) localized sources distinct 
from LCHF circulation pathways.

The H2/CH4 ratios of the fluids can distin-
guish among these possibilities. LCHF fluids 
have H2/CH4 ratios of 0.9–9.2, with the highest 
values occurring in the hottest fluids (Prosku-
rowski et al., 2006, 2008) (Fig. 3; Figs. S8 and 
S9). Subsurface microbial processes lower 

A B

Figure 1. Bathymetric maps of (A) Atlantis Massif and (B) Lost City Hydrothermal Field (LCHF). International Ocean Discovery Program (IODP) 
Expedition 357 boreholes are denoted with yellow triangles, and 2018 hydrocasts are denoted by white circles. Niskin tow followed the black 
arrow, with white circles indicating individual bottle sample locations. Orifices shown in Figure 2 are denoted by black dots. LCHF is repre-
sented by the green star, and white box represents the area in panel B. MAR—Mid-Atlantic Ridge. In B, dashed yellow line shows extent of 
carbonate chimneys. Currently active structures are shown with white triangles. White star marks location of the photo mosaic in Figure S4 
(see footnote 1). Depth contours are in meters.
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this ratio through the consumption of H2 and 
 production of minor amounts of CH4 (Lang 
et al., 2012; Proskurowski et al., 2006). Simi-
lar loss of H2 and gain of CH4 due to subsea-
floor microbial activity occur in a myriad of 
other hydrothermal systems (Von Damm and 
Lilley, 2004; Wankel et al., 2011). Export into 
the water column dilutes the fluids, with no im-
pact on this ratio, and promotes the oxidation of 
both volatiles by microorganisms. Because H2 
is consumed 10× more rapidly than CH4 in the 
oxic water column (Kadko et al., 1990), fluids 
exported from the LCHF have H2/CH4 ratios 
lower than 9.2 (Larson et al., 2015). Therefore, 
fluids with H2/CH4 ratios higher than LCHF flu-
ids (>9.2) cannot be attributed to export from 
the plume or subsurface migration.

The fluids seeping from the eastern wall have 
H2/CH4 ratios similar to or lower than those of 
the LCHF (Fig. 3; Figs. S8 and S9) and are 
likely an extension of the circulation pathway 
supplying the field. The fluids collected over the 
detachment fault boundary have H2/CH4 ratios 
(7.0–9.2) indistinguishable from LCHF fluids. 
However, it is unlikely that they are sourced 
from the main circulation pathway of LCHF 
because they egress 7–11 km to the northeast.

The majority of fluids exiting across the top 
of the massif have H2/CH4 ratios greater than 
those from LCHF (>9.2), pointing to an inde-

pendent source (Fig. 3; Figs. S8 and S9; Table 
S2). Most samples were collected deeper than 
900 m, precluding input from the LCHF plume 
(Fig. 3; Table S2). The exception is the near-
seabed fluids captured at the summit of the mas-
sif, at depths similar to LCHF chimneys (818 
and 848 m; Früh-Green et al., 2017). The LCHF 
plume could have impacted these fluids, but the 
high H2/CH4 ratios (10–148) and evidence of 
fluid flow from nearby orifices are more con-
sistent with largely local sources.

Geological Settings of H2-Rich Fluids 
Dispersed Across the Top of the Massif

The most likely source of H2 across the top 
of the Atlantis Massif is ongoing, widespread 
serpentinization (Fig. 4). Geophysical modeling 
suggests that in addition to vent fluids chan-
neled along relatively narrow flow paths, slow-
er-moving fluids circulate in “low-flux back-
waters of the system” (Titarenko and McCaig, 
2016, p. 325). These backwater fluids would not 
reach the elevated temperatures of those in the 
LCHF, which are heated to 150–250 °C before 
conductively cooling on ascent (Proskurowski 
et al., 2006; Seyfried et al., 2015). Rates of H2 
production due to serpentinization are substan-
tially lower at lower temperatures, but are not 
entirely halted (Mayhew et al., 2013; McCollom 
et al., 2016).

In contrast to H2, temperatures >350 °C ap-
pear to be necessary to overcome the kinetic 
inhibition to CH4 formation (McCollom and 
Seewald, 2007). The isotopic signatures of CH4 
in LCHF fluids indicate that it formed abioti-
cally at temperatures higher than those pres-
ent in the modern system (Wang et al., 2018). 
Therefore, CH4 likely formed early in the sys-
tem when temperatures were hotter, was stored 
over millennia, and was stripped from the rocks 
into modern fluids (McDermott et al., 2015; 
Wang et al., 2018).

A model of extensive lower-temperature 
fluid flow across the top of the massif is also 
supported by alteration mineralogies, δ18O sig-
natures, and rare earth element abundances in 
the Expedition 357 cores, which indicate that 
localized fluid pathways across the southern 
wall are interconnected to form independent 
100-m- to 1-km-sized cells (Roumejon et al., 
2018). Relict olivine is present in central and 
eastern boreholes (M0068, M0072, M0076; 
Früh-Green et al., 2017, 2018), where H2 is most 
abundant (Tables S1 and S2), indicating early 
serpentinization did not go to completion and 
could be ongoing. The high permeability in this 
region results from microfractures and the mesh 
texture of serpentinized peridotite (Roumejon 
et al., 2018), common features in ultramafic 
rocks due to the volume expansion and uptake 

A B C

D E F

Figure 2. (A–F) Visual and sensor evidence of reduced fluids at the top of the Atlantis Massif collected during two remotely operated vehi-
cle Jason transects. Images captured when vehicle was 4.2–4.5 m above the seabed depict typical sediments (A, D), in contrast to orifices 
surrounded by bright white sediments (B, E). Graphs show oxidation reduction potential (ORP) signal versus time in GMT (red line) and 
temperature versus time (blue line). Depth (black line) is shown when vehicle was <5 m above seafloor; changes are due to topography. (C) 
Graph depicts two substantial drops in ORP (ΔE); drops >0.5 mV are diagnostic of reducing hydrothermal effluent (Text S1 [see footnote 1]). 
ΔE1 = −1.4 mV (from 12:46–12:48:16 h) corresponds to descent of vehicle through Lost City Hydrothermal Field (LCHF) plume from ∼750 to 
775 m. ΔE2 = −4.3 mV occurred while transiting and corresponds with 0.18–0.33 °C temperature increase. (F) Graph depicts ΔE = −8.6 mV from 
11:54:36 to 23:09:11 h, with corresponding temperature spike of 0.09–0.13 °C.
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of water during serpentinization (MacDonald 
and Fyfe, 1985).

Implications for the Early Evolution of Life
Serpentinization-fueled hydrothermal systems 

have been proposed as potential locations for the 

origin and evolution of the first biochemical path-
ways due to the thermodynamic drive supplied by 
H2, the alkaline conditions that are favorable for 
prebiotic chemistry, and the redox and pH gradi-
ents that promote biochemical reactions (Martin 
and Russell, 2007; Sojo et al., 2016).

Proponents of a “small warm pond” for the 
origin of life emphasize the important roles 
of wet-dry cycles to promote polymerization 
(Frenkel-Pinter et al., 2020) and of clay min-
erals for forming and replicating biopolymers 
with specific sequences (Yu et al., 2013). Dis-
persed, low-flow circulation across the Atlantis 
Massif may create similar micro-environments 
of fluctuating water availability as water is 
consumed during serpentinization, followed 
by stages of higher water activity (Nascimen-
to Vieira et al., 2020; Roumejon et al., 2018). 
Furthermore, serpentinization leads to the for-
mation of serpentine and smectite clays (e.g., 
saponite) (MacDonald and Fyfe, 1985), which 
are similar to the montmorillonite clays most 
commonly invoked in origin-of-life hypotheses 
(Yu et al., 2013). Therefore, the widespread, 
localized flux of low-temperature, H2-bearing 
fluids through micro-environments containing 
clay minerals and fluctuating water availability 
may have been more conducive to the synthesis 
of the first biomolecules than the channelized 
flow of higher-temperature fluids through the 
central field.

Problematically, ancient serpentinization 
systems may have been starved for sulfur. Metal-
sulfide minerals are thought to have been central 
to the origin of biochemical pathways as the 
catalytic templates of the first enzymes (Cam-
prubi et al., 2017; Martin and Russell, 2007; 
Weiss et al., 2017). Sulfur in modern ultramafic 
rocks is largely derived from seawater sulfate 
(Alt et al., 2013), and ancient prebiotic oceans 
had <1% of the inorganic sulfur content of mod-
ern oceans (Crowe et al., 2014). The peridotite-
dominated southern wall, where nonchannelized 
fluid flow is dominant, contains ∼30% gabbro 
intrusions (Boschi et  al., 2006; Früh-Green 
et al., 2018; Karson et al., 2006; Roumejon 
et al., 2018), and there is evidence that the sul-
fur in these mafic rocks is transferred into the 
peridotites (Liebmann et al., 2018). Therefore, 
the nonchannelized fluids may have entrained 
sufficient quantities of sulfur to make metal-sul-
fide catalysts available for primitive biochemical 
reactions in the serpentinite subsurface.

CONCLUSION
We documented the export of reducing, 

H2-rich fluids over a large geographical area 
across the Atlantis Massif, likely due to continu-
ing serpentinization of the high-permeability, 
peridotite-dominated southern wall. The ele-
vated H2/CH4 ratios of these widely distributed 
fluids indicate that they have a localized source 
distinct from the central LCHF. The geological 
features leading to this type of extensive circu-
lation are common in oceanic core complexes 
and therefore possibly widespread in the world’s 
ocean. On ancient Earth, similar circulation of 
low-temperature, H2-rich fluids through micro-
environments within the ocean crust could have 
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Figure 3. Distribution of CH4 (nM), H2 (nM), and H2/CH4 (mol/mol) ratios across the Atlantis Massif. 
Highest H2 and CH4 concentrations and lowest H2/CH4 ratios are above the Lost City Hydro-
thermal Field (LCHF). Lines are 500 m depth contours; color scale is the same as in Figure 1A.
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provided the fuel, sulfur, and fluctuating water 
availability necessary for the formation of early 
enzymes.
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